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Introduction
Light from a blackbody radiation source exhibits statistical intensity fluc-

tuations [1] that exceeds a random Poissonian statistical distribution,

whereby the photons tend to bunch together both spatially and tempo-

rally at its characteristic timescale, τc ≈ 1
∆ν , where ∆ν is the spectral

width of the light source. For the Doppler-broadened spectral emission

at 546.1 nm of a Mercury vapour lamp, the second-order temporal cor-

relation function g(2)(τ ) ( measurement of photon bunching) is given by

[2]:

g(2)(τ ) = 1 + exp(−π(τ/τc)
2) (1)

where τ is the timing delay between a pair of photons.

Timescales of 10−14 s for typical blackbody sources such as the Sun make

it difficult to observe these statistical intensity fluctuations. As such, we

probe a Doppler-broadened Mercury vapour lamp at the characteristic

546.1 nm spectral emission with a characteristic timescale on the order

of nanoseconds with a pair of Silicon Avalanche Photon Diodes (APDs)

with a timing resolution of 0.6 ns.
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Figure 1: Schematic of the setup used to measure g(2)(τ )

The Mercury light is collected into a collection lens (EFL of 25.0 mm at

587.6 nm), and subsequently into a single mode fibre (λ = 488 to 633 nm)

before going through a beamsplitter cube. The light is then collected

by a pair of Avalanche Photon Detectors (APDs). The avalanche break-

down from the APDs trigger NIM outputs, which correspond to photo-

events, and are correlated by a digital oscilloscope with 1 GHz bandwidth,

by measuring the timing separation between a pair of consecutive pho-

toevents. These timing separations were then binned into a histogram.

Typical photon count rates for each APD are on the order of 40,000 counts

per second, implying a coincidence rate of ≈ 16 coincidence events/s.

Results and Discussion
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Figure 2: The Mercury spectral emission at 546.1 nm (with sta-

tistical error bars) is fitted to a Skewed Gaussian, giving a peak

wavelength of 546.4 nm with a Full Width at Half Maximum

(FWHM) of 1.2 nm, limited by detector resolution. Although

this provides a relatively poor fit (Goodness of fit χ2/doF = 83),

it is much better than χ2/doF = 106 when using a non-skewed

Gaussian model.
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Figure 3: An APD emits light upon each photoevent; this emit-

ted light can then be correlated with the initial photoevent us-

ing the second APD. The observation of twin photon correlation

peaks provides a sanity check as to the capability of the APDs of

measuring a correlation signals in the nanosecond regime. Since

only peak is observed, it suggests that a larger conincidence win-

dow might be required.

The statistical measurement of the timing separation between each pair

of photodetection events (temporal coherence):
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Figure 4: Histogram of the measured timing separations. Oscil-

loscope correlation window is of 50 ns. Error-bars are the square-

root of the bin value, as we approximate Poissonian statistics; no

statistically significant peaks (that indicate photon bunching), are

observed. The g(2)(τ = 0) is measured to be 1.0 ± 0.2.

It is likely that we have neglected the polarisation of the beamsplitter

cube. Additionally, the integration times for the correlation measure-

ments could have been longer, reducing the statistical uncertainty of the

measurements.
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